A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD).

نویسنده

  • Kenji Suzuki
چکیده

Computer-aided diagnosis (CAD) has been an active area of study in medical image analysis. A filter for the enhancement of lesions plays an important role for improving the sensitivity and specificity in CAD schemes. The filter enhances objects similar to a model employed in the filter; e.g. a blob-enhancement filter based on the Hessian matrix enhances sphere-like objects. Actual lesions, however, often differ from a simple model; e.g. a lung nodule is generally modeled as a solid sphere, but there are nodules of various shapes and with internal inhomogeneities such as a nodule with spiculations and ground-glass opacity. Thus, conventional filters often fail to enhance actual lesions. Our purpose in this study was to develop a supervised filter for the enhancement of actual lesions (as opposed to a lesion model) by use of a massive-training artificial neural network (MTANN) in a CAD scheme for detection of lung nodules in CT. The MTANN filter was trained with actual nodules in CT images to enhance actual patterns of nodules. By use of the MTANN filter, the sensitivity and specificity of our CAD scheme were improved substantially. With a database of 69 lung cancers, nodule candidate detection by the MTANN filter achieved a 97% sensitivity with 6.7 false positives (FPs) per section, whereas nodule candidate detection by a difference-image technique achieved a 96% sensitivity with 19.3 FPs per section. Classification-MTANNs were applied for further reduction of the FPs. The classification-MTANNs removed 60% of the FPs with a loss of one true positive; thus, it achieved a 96% sensitivity with 2.7 FPs per section. Overall, with our CAD scheme based on the MTANN filter and classification-MTANNs, an 84% sensitivity with 0.5 FPs per section was achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massive-Training Artiicial Neural Networks (MTANN) in Computer-Aided Detection of Colorectal Polyps and Lung Nodules in CT 343 Massive-Training Artiicial Neural Networks (MTANN) in Computer-Aided Detection of Colorectal Polyps and Lung Nodules in CT

Computer-aided diagnosis (CAD) (Giger and Suzuki 2007) has been an active area of study in medical image analysis, because evidence suggests that CAD can help improve the diagnostic performance of radiologists in their image interpretations (Li, Aoyama et al. 2004; Li, Arimura et al. 2005; Dean and Ilvento 2006). Many investigators have participated in and developed CAD schemes for detection/di...

متن کامل

False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network.

RATIONALE AND OBJECTIVE We developed a technique that uses a multiple massive-training artificial neural network (multi-MTANN) to reduce the number of false-positive results in a computer-aided diagnostic (CAD) scheme for detecting nodules in chest radiographs. MATERIALS AND METHODS Our database consisted of 91 solitary pulmonary nodules, including 64 malignant nodules and 27 benign nodules, ...

متن کامل

Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes.

One of the limitations of the current computer-aided detection (CAD) of polyps in CT colonography (CTC) is a relatively large number of false-positive (FP) detections. Rectal tubes (RTs) are one of the typical sources of FPs because a portion of a RT, especially a portion of a bulbous tip, often exhibits a cap-like shape that closely mimics the appearance of a small polyp. Radiologists can easi...

متن کامل

CT colonography: advanced computer-aided detection scheme utilizing MTANNs for detection of "missed" polyps in a multicenter clinical trial.

PURPOSE The purpose of this study was to develop an advanced computer-aided detection (CAD) scheme utilizing massive-training artificial neural networks (MTANNs) to allow detection of "difficult" polyps in CT colonography (CTC) and to evaluate its performance on false-negative (FN) CTC cases that radiologists "missed" in a multicenter clinical trial. METHODS The authors developed an advanced ...

متن کامل

Suppression of the Contrast of Ribs in Chest Radiographs by Means of Massive Training Artificial Neural Network

We developed a method for suppression of the contrast of ribs in chest radiographs by means of a massive training artificial neural network (MTANN). The MTANN is a trainable highly nonlinear filter that can be trained by using input chest radiographs and the corresponding teacher images. We used either the soft-tissue image or the bone image obtained by use of a dual-energy subtraction techniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 54 18  شماره 

صفحات  -

تاریخ انتشار 2009